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What is emergence?

⚫ Emergence occurs when a complex entity has properties or behaviors that its 

parts do not have on their own, and emerge only when they interact in a 

wider whole. 
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What are phases?

⚫ Renormalization group – a pathway towards understanding collective behaviors

𝐻 = −𝐽σ⟨𝑖𝑗⟩𝝈𝒊 ⋅ 𝝈𝒋

⚫ Image recognition, AI, even life, are collective behaviors

3

John Hopfield & Geoffrey Hinton 
2024 Nobel Prize in Physics

Kenneth G. Wilson
1982 Nobel Prize 

in Physics
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of images

No two cells are 
exactly the same!

universal properties irrespective of microscopic details



AI for Quantum Phases Recognition

AI for Quantum Phase Recognition

Review: discriminative AI
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AI for Quantum Phases Recognition

⚫ Viability – review: discriminative AI and supervised machine learning

◼ With interpretability

⚫ Necessity – sometimes: 

◼ Diverse phases and candidates

◼ Hidden, abstract, and complex rules

◼ Noises and fluctuations

◼ Big data, experimentally or numerically

The Fock space is exponentially large 230~1000000000, 21000 ∼ 100⋯00 with >300 zeros!
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A quantum many-body state: 



AI for Quantum Phases Recognition

⚫ The Ising model: 

two phases: ferromagnetic (ordered) vs paramagnetic (disordered) 

Numerical data: Monte Carlo samples

⚫ The Aubry-Andre model (quasicrystal): 

Numerical data: LDOS
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𝑇𝑐 = 2𝐽/𝑘𝐵 ln 1 + 2

ferromagnetic   critical   paramagnetic

Juan Carrasquilla, Roger G. Melko, 2017.

delocalized vs localized
𝜆𝑐 = 𝐽

simple HW assignment: phase diagram (5pt)



AI for Quantum Phases Recognition

⚫ Quantum and topological phases: the compatibility issue

⚫ E.g., topological phases:

7

Yi Zhang, E.-A. Kim, 2017.

‘Informative’ operatorsQuantum many-body states AI

when operators are irrelevant, e.g., 𝑛𝑟 = 𝑐𝑟
†𝑐𝑟

Fractional 
QH insulator

Normal 
insulator

strongly-correlated 
topological phases: 

QH insulatorNormal 
insulator

relevant operators in
the Kubo formula for 𝜎𝑥𝑦

a feature selection layer to bridge between



AI for Quantum Phases Recognition

⚫ From quantum many-body models, for quantum many-body models:

◼ Observation 1: various model parameters

𝐻 = σ𝑟𝑟′ 𝑡𝑟𝑟′ 𝑐𝑟
†𝑐𝑟′ + σ𝑟 𝜇𝑟𝑐𝑟

†𝑐𝑟 + σ𝑟𝑈𝑟𝑐𝑟
†𝑐𝑟 𝑛𝑟

𝑓
+⋯

◼ Observation 2: nonlinear physical properties

LDOS: Conductance

◼ Observation 3: efficient recursive methods

⚫ Direct quantum and topological phase recognitions without presumptions: 
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Pei-Lin Zheng, et al. 2023, 2024.

map and recognize 
topological phases via 
collective properties 
of FQNN models:

recognize emergent charge 
density wave phases –
(un)controlled estimates in 
FQNNs (original) models: 



AI for Quantum Phases Recognition

⚫ Interpretation of big, complex experimental data

⚫ However, our theoretical capacity largely lags behind our real-world complexity: 
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Yi Zhang, et al. 2020.

averaged over 1000 FOVs
= information is still present

Fourier transform

Quasi-particle interference pattern as a 
Fermi-surface probe of electron liquids

Friedel oscillations as a screening and back-
scattering process around a local impurity

synergy between 
experiment and theory Momentum space
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big data, 
noisy data, 
many-body,  
hidden rules, 
etc. experiment

theory 

hypothesis

Predict

Verify

AI interface



AI for Quantum Phases Recognition
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⚫ How experiments have evolved: from to

⚫ Idea: Train with the big noisy data, trained for the big noisy data 

◼ Recognition of nematic phases from STM data

◼ Recognition of CDW phases from STM data

Yi Zhang, et al. 2019, 2020.

Giaever et al., 
Phys. Rev. 126, 941 (1962).

generalizable to other big 
noisy experimental data, 
e.g. neutron scattering 

Anjana Samarakoon, et al. 2020.



AI for Quantum MC Methods

AI for Quantum Monte Carlo Methods

Review: generative AI
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MC and Quantum MC Methods

⚫ Statistical mechanics: 𝑊 Ԧ𝑥 =
1

𝑍
exp −

𝐸 Ԧ𝑥

𝑘𝐵𝑇
, 𝑍 = σ Ԧ𝑥 exp −

𝐸 Ԧ𝑥

𝑘𝐵𝑇

⚫ Example: Ising model 𝐸 Ԧ𝑥 = −σ⟨𝑖𝑗⟩ 𝐽𝑥𝑖𝑥𝑗, 𝑥𝑖 = ±1

⚫ The Metropolis Algorithm: (also used in simulated annealing)

1. Generate a random initial state Ԧ𝑥𝑡=0 with energy 𝐸 Ԧ𝑥𝑡=0 ;

2. Flip a random spin 𝑥𝑖 → −𝑥𝑖 and calculate the energy 𝐸 Ԧ𝑥? of this trial state Ԧ𝑥?;

3. Calculate the difference in energy generated by the spin flip, Δ𝐸 = 𝐸 Ԧ𝑥? − 𝐸 Ԧ𝑥𝑡 ;

⋅ If Δ𝐸 ≤ 0 (the trial spin state is energetically favorable), accept the spin flip;

⋅ If Δ𝐸 > 0, accept the spin flip with probability 𝑝 = exp −Δ𝐸/𝑘𝐵𝑇 ;

4. Measure the target physical quantities, e.g., energy, magnetization, etc.

5. Repeat steps (2) to (4) until sufficient number 𝑁 of uncorrelated samples are obtained.

The target probabilities are guaranteed by detailed balance:

𝑊 𝐴

𝑊 𝐵
=
𝑃 𝐵 → 𝐴

𝑃 𝐴 → 𝐵
= exp −

𝐸𝐴 − 𝐸𝐵
𝑘𝐵𝑇
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optimization via simulated annealing



MC and Quantum MC Methods

⚫ Also applicable to certain quantum many-body models

◼ Auxiliary-Field Quantum Monte Carlo

◼ Path Integral Monte Carlo 

◼ Determinantal Monte Carlo

◼ Stochastic Series Expansion Quantum Monte Carlo, etc. 

commonly sampling configurations in (d+1)-dims space-(imaginary)-time

⚫ However, local minima cause critical slowing down – cluster update:

1. Choose a random site 𝑥𝑖.

2. Add neighbor site 𝑥𝑗 = 𝑥𝑖 into the cluster

with probability 𝑝 = 1 − 𝑒−2𝛽𝐽.

3. Grow the cluster until all neighbors are

considered. Flip cluster.
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AI for Quantum MC Methods

⚫ Pros and cons of cluster update: 

◼ probability 𝑊( Ԧ𝑥) ensured via detailed balance 

◼ global updates with high efficiency (100% acceptance rate)

◼ yet, heavily reliant on the model 

We cannot flip a random cluster with detailed-balance probability, which equals 

exponentially small acceptance rate!   globally distinctive states with similar weights

⚫ Idea: fitting 𝑊 Ԧ𝑥 with an AI model: 

then accept cluster with acceptance rate: 

after which the MC is exact.
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Huitao Shen, Junwei Liu, and Liang Fu, 2018.

∼catalyst



Generative models

⚫ Graph models: probability distribution with statistical mechanics

⚫ Restricted Boltzmann Machine

◆ A binary graphic model with no intra-layer connections

◆ The configuration probability follows Boltzmann distribution

◆ 𝑾, 𝒃, and 𝒄 as model parameters, after training:

⚫ Generative Pre-trained Transformer (GPT)

15

𝑾

𝒃

𝒄

“Restricted”
Similar to and 
trainable as ANN: 

Generating handwritten digits: 

maximize the likelihood of given data
or fit to a given distribution



AI for Quantum MC Methods

⚫ Example: the Falicov-Kimball model on 2D square lattice

⚫ The trained RBM successfully captures the probability distribution: 

compensate with: 

⚫ Nonlocal updates from hidden variables:
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Li Huang and Lei Wang, 2017.

drastically improved 
acceptance rate and 
autocorrelation time



AI for Quantum Control and Optimization

AI for Quantum Control and Optimization

Review: reinforcement learning
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Quantum Processes – Quantum Compiling

◆ Classical computer: 

◆ Quantum computer: 

⚫ Goal: find fast a short sequence 𝑈 ≈ 𝑈1
𝑛1𝑈2

𝑛2𝑈1
𝑛3𝑈2

𝑛4⋯ close to 𝑈𝑡𝑎𝑟

◆ brute-force: good length complexity but bad time complexity

◆ Solovay-Kitaev (recursive): good time complexity but bad length complexity
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Physical LayerSoftware Logical layer

Logical gates:

Fundamental 
quantum gates: 

braiding of Fibonacci anyons

Chetan Nayak, et al., 2008.



Reinforcement learning

⚫ Reinforcement learning: An agent that interacts with an environment and 

maximizes reward (minimizes penalty) 

𝑆: current state; 𝐴: action upon state; 𝑅: reward

𝑆 → 𝑆′ → 𝑆′′ → ⋯ → target

◼ Video games: 𝑆: screen; 𝐴: joystick input; 𝑅: score, life, cleared levels …

◼ Chess, Go:  𝑆: current board configuration; 𝐴: next move; 𝑅: win …

◼ Rubik’s cube:  𝑆: current colorings; 𝐴: next twist; 𝑅: (minus) steps taken …

Training the AI model self-consistently with the Bellman equation: 
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𝐴 𝐴’ 𝐴’’

accumulated reward 𝑅AI



AI for Quantum Control and Optimization

⚫ Comparison between Rubik’s cube and quantum compiling:  

◆ 𝑆: current configuration / unitary 𝑈

◆ 𝐴: applied rotation / elementary gate 𝑈𝑖

◆ 𝑅: expected distance towards solution

⚫ Combine the cost(-to-go) function:

with the weighted A* search: 
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Q-learning: 



AI for Quantum Control and Optimization

⚫ Time complexity: comparable to the SK recursion, very efficient

⚫ Length complexity: comparable to brute force 

Typical target-unitary examples : 
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better than   
𝑂 10−3 precision

A novel good-
enough solver

Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang, and Dong-Ling Deng, 2020.

𝑆 → 𝑆′ → 𝑆′′ → ⋯



AI for Quantum Control and Optimization

⚫ Quantum process – quantum state preparation, e.g., the Dicke state 

⚫ Conventionally, adiabatic evolution, slowly turn off 𝑞 𝑡 to keep at ground state

⚫ AI allows to think outside the box: 

A faster process is obtained via reinforcement learning

Excited states are generated in the meantime – no adiabaticity 

Nevertheless, final state large overlap with target 
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Shuai-Feng Guo, et al. (2021)



Summary

⚫ AI for quantum phases: numerical and experimental data and models

⚫ AI for quantum methods: synergy and catalyst for algorithmic efficiency

⚫ AI for quantum control: quantum compiling and state preparation

⚫ Discussions:

◆ No black magic: performance bounded from above by the quality of the samples.

◆ Even for the best case scenario, AI methods are approximate. 

◆ Use the knowledge and intuition to improve, every bit helps!

◆ Reverse thinking and consider AI for reverse thinking

◆ Sometimes, trying an idea out is the best way to verify its practicality. 

⚫ We are still at an early stage of AI for Physics and Science. 
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‘A good chef cannot make a decent meal with no ingredients.’

Know your target 

and limitations!



Email: frankzhangyi@pku.edu.cn


