《物理与人工智能》

AI与量子多体物理

授课教师: 张亿 frankzhangyi@pku.edu.cn

北京大学物理学院量材中心

2025/11/24 (第12周)

What is emergence?

water molecule

individual

• Emergence occurs when a complex entity has properties or behaviors that its parts do not have on their own, and emerge only when they interact in a wider whole SCIENCE 4 August 1972, Volume 177, Number 4047

More Is Different

P. W. Anderson Universal macroscopic Numerous microscopic degrees of freedom behaviors a single flower pixel recognition: a single ✓ Many-body antiferromagnet spin

✓ And more:

wet

macroeconomy

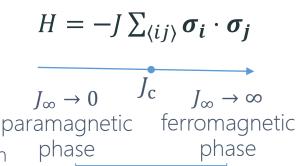
✓ Image

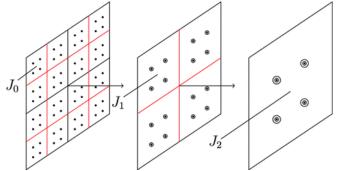
physics:

What are phases?

• Renormalization group – a pathway towards understanding collective behaviors

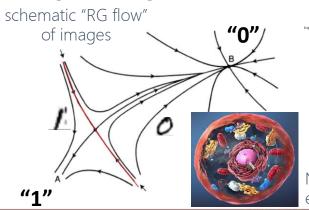
Kenneth G. Wilson 1982 Nobel Prize in Physics

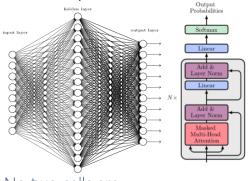




universal properties irrespective of microscopic details

Image recognition, Al, even life, are collective behaviors





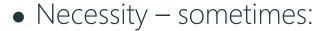
No two cells are exactly the same!

John Hopfield & Geoffrey Hinton 2024 Nobel Prize in Physics

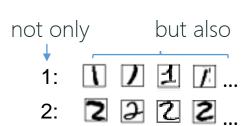
Al for Quantum Phase Recognition

Review: discriminative Al

- Viability review: discriminative AI and supervised machine learning
 - With interpretability



- Diverse phases and candidates
- Hidden, abstract, and complex rules
- Noises and fluctuations
- Big data, experimentally or numerically



3 **3** 3 3:

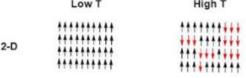
 α

The Fock space is exponentially large $2^{30} \sim 1000000000$, $2^{1000} \sim 100 \cdots 00$ with >300 zeros!

The Ising model:

$$H(\sigma) = -J \sum_{\langle i \; j
angle} \sigma_i \sigma_j$$

two phases: ferromagnetic (ordered) vs paramagnetic (disordered)

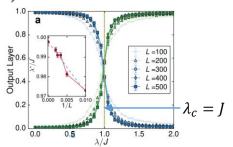


Numerical data: Monte Carlo samples

The Aubry-Andre model (quasicrystal):

$$H = -J\sum_i \left(c_i^\dagger c_{i+1}^{} + \mathrm{h.c}\right) + 2\lambda \sum_i \cos(2\pi\phi i) c_i^\dagger c_i^{}$$

Numerical data: LDOS delocalized vs localized



0.2 | Input $T_c = 2J/k_B \ln(1+\sqrt{2})$

simple HW assignment: phase diagram (5pt)

ferromagnetic critical paramagnetic

2.0

Juan Carrasquilla, Roger G. Melko, 2017.

Quantum and topological phases: the compatibility issue

a feature selection layer to bridge between Quantum many-body states 'Informative' operators • E.g., topological phases: relevant operators in the Kubo formula for σ_{xy} site $P_{ik}P_{kl}P_{lj}$ $P_{ij} \equiv \langle c_i^{\dagger}c_j \rangle$ strongly-correlated 1.0 topological phases: when operators are irrelevant, e.g., $n_r = c_r^\dagger c_r$ 0.8-1.00 GS#1 Q 0.6 GS#2 Normal QH insulator 0.75 GS#3 insulator Fractional Normal 0.50 insulator QH insulator dc = 20.2 configuration 0.25 0.2 0.2 0.6 8.0 0.00 0.45 0.50 0.55 0.60 0.2 0.4 0.6 0.8 Yi Zhang, E.-A. Kim, 2017.

• From quantum many-body models, for quantum many-body models:

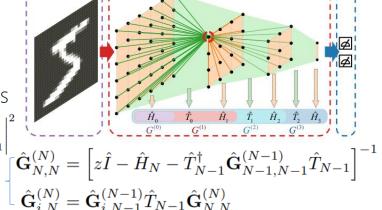
Observation 1: various model parameters

$$H = \sum_{rr'} t_{rr'} \, c_r^\dagger c_{r'} + \sum_r \mu_r c_r^\dagger c_r + \sum_r U_r c_r^\dagger c_r \, n_r^f + \cdots$$

Observation 2: nonlinear physical properties

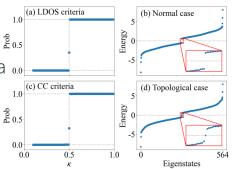
LDOS:
$$y_k = -\frac{1}{\pi} \Im \left[\hat{\mathbf{G}}_{L,L}^{(L)} \right]_{k,k}$$
 Conductance $y = \sum_{m} \left| \left[\hat{\mathbf{G}}_{0,L}^{(L)} \right]_{m,1} \right|^2$

Observation 3: efficient recursive methods

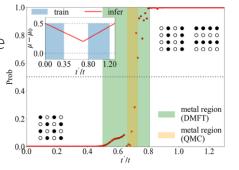


• Direct quantum and topological phase recognitions without presumptions:

map and recognize \$\frac{2}{2} \text{0.5} \text{0.5} \text{collective properties} \text{0.6} \text{0.6} \text{0.6} \text{0.7} \text{



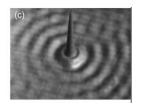
recognize emergent charge density wave phases – (un)controlled estimates in FQNNs (original) models:

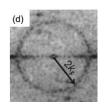


Pei-Lin Zheng, et al. 2023, 2024.

• Interpretation of big, complex experimental data

Quasi-particle interference pattern as a Fermi-surface probe of electron liquids

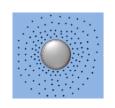


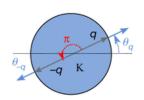


Fourier transform

synergy between experiment and theory/

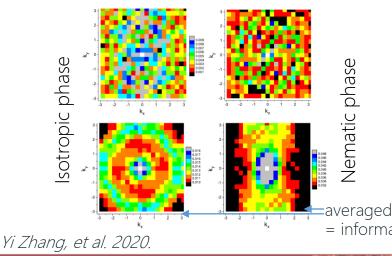
Friedel oscillations as a screening and backscattering process around a local impurity



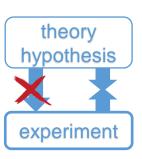


Momentum space

• However, our theoretical capacity largely lags behind our real-world complexity:



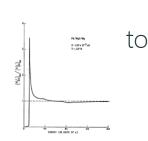
averaged over 1000 FOVs = information is still present Predict big data, noisy data, many-body, hidden rules, etc. Verify

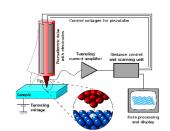


Al interface

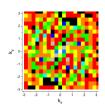
How experiments have evolved: from

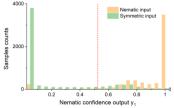
Giaever et al., Phys. Rev. 126, 941 (1962).

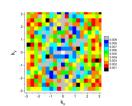




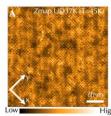
- Idea: Train with the big noisy data, trained for the big noisy data
 - Recognition of nematic phases from STM data

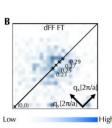


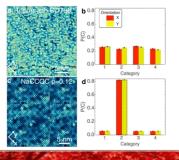




Recognition of CDW phases from STM data



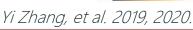


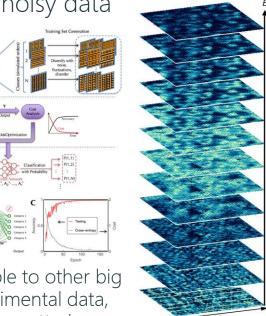


generalizable to other big

noisy experimental data, e.g. neutron scattering

Anjana Samarakoon, et al. 2020.





Al for Quantum MC Methods

Al for Quantum Monte Carlo Methods

Review: generative Al

MC and Quantum MC Methods

- Statistical mechanics: $W(\vec{x}) = \frac{1}{Z} \exp\left[-\frac{E(\vec{x})}{k_B T}\right], Z = \sum_{\vec{x}} \exp\left[-\frac{E(\vec{x})}{k_B T}\right]$
 - Example: Ising model $E(\vec{x}) = -\sum_{\langle ij \rangle} J x_i x_j$, $x_i = \pm 1$
- The Metropolis Algorithm: (also used in simulated annealing)
 - 1. Generate a random initial state $\vec{x}_{t=0}$ with energy $E(\vec{x}_{t=0})$;
 - 2. Flip a random spin $x_i \to -x_i$ and calculate the energy $E(\vec{x}_i)$ of this trial state \vec{x}_i ;
 - 3. Calculate the difference in energy generated by the spin flip, $\Delta E = E(\vec{x}_2) E(\vec{x}_t)$;
 - · If $\Delta E \leq 0$ (the trial spin state is energetically favorable), accept the spin flip;
 - · If $\Delta E > 0$, accept the spin flip with probability $p = \exp(-\Delta E/k_BT)$;
 - 4. Measure the target physical quantities, e.g., energy, magnetization, etc.
 - 5. Repeat steps (2) to (4) until sufficient number N of uncorrelated samples are obtained.

The target probabilities are guaranteed by detailed balance:

$$\frac{W(A)}{W(B)} = \frac{P(B \to A)}{P(A \to B)} = \exp\left(-\frac{E_A - E_B}{k_B T}\right)$$

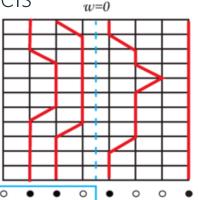
optimization via simulated annealing

MC and Quantum MC Methods

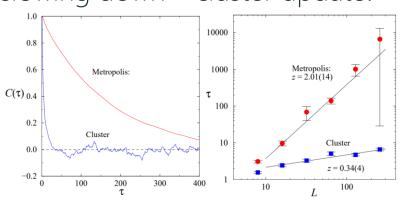
Also applicable to certain quantum many-body models

- Auxiliary-Field Quantum Monte Carlo
- Path Integral Monte Carlo
- Determinantal Monte Carlo
- Stochastic Series Expansion Quantum Monte Carlo, etc.

commonly sampling configurations in (d+1)-dims space-(imaginary)-time

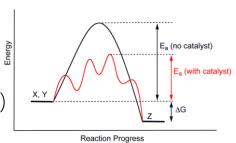


- However, local minima cause critical slowing down cluster update:
 - 1. Choose a random site x_i .
 - 2. Add neighbor site $x_j = x_i$ into the cluster with probability $p = 1 e^{-2\beta J}$.
 - 3. Grow the cluster until all neighbors are considered. Flip cluster.



Al for Quantum MC Methods

- Pros and cons of cluster update:
 - probability $W(\vec{x})$ ensured via detailed balance
 - global updates with high efficiency (100% acceptance rate)
 - yet, heavily reliant on the model

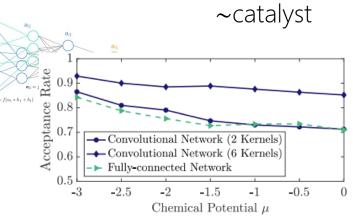


We cannot flip a random cluster with detailed-balance probability, which equals exponentially small acceptance rate! > globally distinctive states with similar weights

• Idea: fitting $W(\vec{x})$ with an AI model: then accept cluster with acceptance rate:

$$\alpha(A \to B) = \min\{1, e^{-\beta[(E_B - E_B^{\text{eff}}) - (E_A - E_A^{\text{eff}})]}\}$$

after which the MC is **exact**.



Huitao Shen, Junwei Liu, and Liang Fu, 2018.

Generative models

• Graph models: probability distribution with statistical mechanics

$$\mu(v) = rac{1}{Z} \expigg\{ \sum_i heta_i v_i + \sum_{(i,j) \in E} heta_{ij} v_i v_j igg\}$$

◆ The configuration probability follows Boltzmann distribution

$$P(\boldsymbol{X}, \boldsymbol{H}) = \frac{1}{Z} \exp(-E(\boldsymbol{X}, \boldsymbol{H})) \qquad \boldsymbol{H} = (H_1, ..., H_J)^T$$

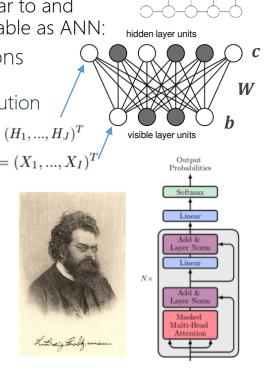
$$E(\boldsymbol{X}, \boldsymbol{H}) = -\boldsymbol{X}^T \boldsymbol{b} - \boldsymbol{c}^T \boldsymbol{H} - \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{H} \qquad \boldsymbol{X} = (X_1, ..., X_I)^T$$

 \bullet **W**, **b**, and **c** as model parameters, after training:

maximize the likelihood of given data or fit to a given distribution

Generating handwritten digits:

Generative Pre-trained Transformer (GPT)



Al for Quantum MC Methods

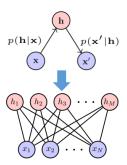
Example: the Falicov-Kimball model on 2D square lattice

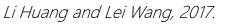
$$\hat{H}_{FK} = \sum_{i,j} \hat{c}_i^{\dagger} \mathcal{K}_{ij} \hat{c}_j + U \sum_{i=1}^N \left(\hat{n}_i - \frac{1}{2} \right) \left(x_i - \frac{1}{2} \right) \begin{cases} x_i \in \{0,1\} \\ \mathcal{K}_{ij} = -t \quad U/t = 4 \end{cases}$$
$$p_{FK}(\mathbf{x}) = e^{-F_{FK}(\mathbf{x})} / Z_{FK}$$
$$\beta = 1/T$$

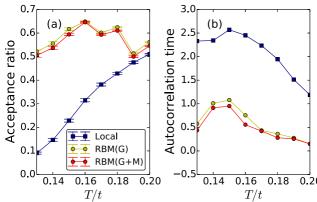
• The trained RBM successfully captures the probability distribution:

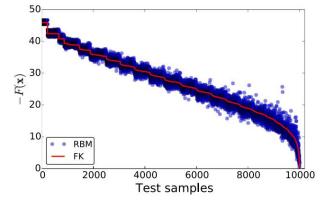
compensate with:
$$A(\mathbf{x} \to \mathbf{x}') = \min \left[1, \frac{p(\mathbf{x})}{p(\mathbf{x}')} \cdot \frac{p_{\text{FK}}(\mathbf{x}')}{p_{\text{FK}}(\mathbf{x})} \right]$$

Nonlocal updates from hidden variables:









drastically improved acceptance rate and autocorrelation time

Al for Quantum Control and Optimization

Review: reinforcement learning

Quantum Processes – Quantum Compiling

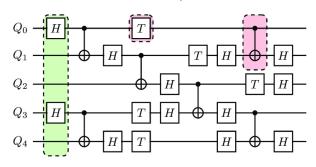
Classical computer:

Software

Logical layer

Physical Layer

Quantum computer:



Fundamental quantum gates:

 $\pi/8 \; (\mathbf{T}) \; \begin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix} \ (n^{-4} \quad 0) \; \left(-\phi^{-1}n^{-1} \quad \phi^{-\frac{1}{2}}n^{-3} \right)$

Hadamard (H) $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$

 $\sigma_{1} = \begin{pmatrix} \eta^{-4} & 0 \\ 0 & \eta^{3} \end{pmatrix} \quad \sigma_{2} = \begin{pmatrix} -\phi^{-1}\eta^{-1} & \phi^{-\frac{1}{2}}\eta^{-3} \\ \phi^{-\frac{1}{2}}\eta^{-3} & -\phi^{-1} \end{pmatrix}$ $\eta = e^{i\pi/5} \quad \phi = (\sqrt{5} + 1)/2$

braiding of Fibonacci anyons

Chetan Nayak, et al., 2008.

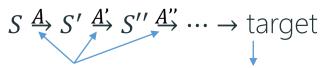
- Goal: find *fast* a *short* sequence $U \approx U_1^{n_1} U_2^{n_2} U_1^{n_3} U_2^{n_4} \cdots$ *close* to U_{tar}
 - brute-force: good length complexity but bad time complexity
 - ◆ Solovay-Kitaev (recursive): good time complexity but bad length complexity

Reinforcement learning

Reinforcement learning: An agent that interacts with an environment and

maximizes reward (minimizes penalty)

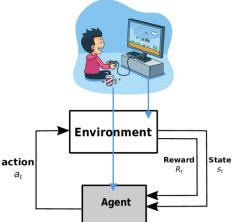
S: current state; A: action upon state; R: reward



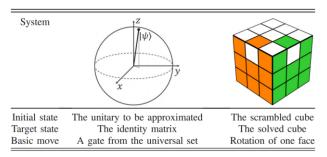
- Chess, Go: S: current board configuration; A: next move; R: win ...
- Rubik's cube: S: current colorings; A: next twist; R: (minus) steps taken ...

Training the AI model self-consistently with the Bellman equation:

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$



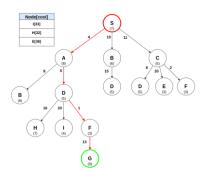
- Comparison between Rubik's cube and quantum compiling:
 - ullet S: current configuration / unitary U
 - lacktriangle A: applied rotation / elementary gate U_i
 - ♠ R: expected distance towards solution

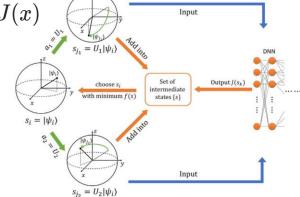


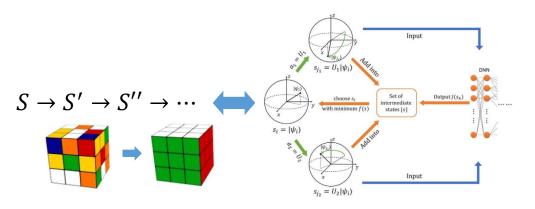
Combine the cost(-to-go) function:

Q-learning: $J'(s) = \min_a (1 + J(A(s, a)))$

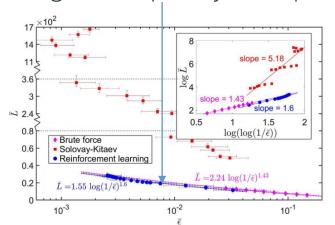
with the weighted A* search: $f(x) = \lambda g(x) + J(x)$



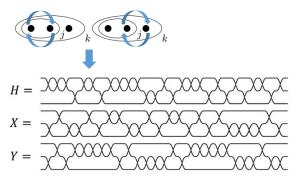




- Time complexity: comparable to the SK recursion, very efficient
- Length complexity: comparable to brute force



Typical target-unitary examples:



better than $O(10^{-3})$ precision

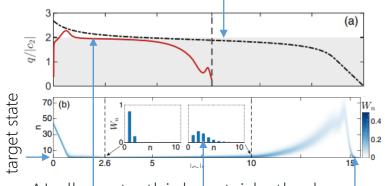
A novel *good-enough* solver

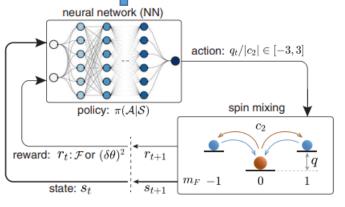
Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang, and Dong-Ling Deng, 2020.

Quantum process – quantum state preparation, e.g., the Dicke state

$$H = \frac{c_2}{2N} \mathbf{L}^2 - q(t) N_0 \qquad c_2 < 0 \qquad |\psi_{\text{Dicke}}^{(0)}\rangle \equiv |N, L_z = 0\rangle$$

ullet Conventionally, adiabatic evolution, slowly turn off q(t) to keep at ground state





Al allows to think outside the box:

A faster process is obtained via reinforcement learning

$$s_t$$
: $\rho_0 = \langle N_0 \rangle / N$, $\langle \delta N_0^2 \rangle / N^2$, $|\langle a_{+1}^\dagger a_{-1}^\dagger a_0^2 \rangle| / N^2$
 $\theta_s = \arg \langle a_{+1}^\dagger a_{-1}^\dagger a_0^2 \rangle$

Excited states are generated in the meantime – no adiabaticity

Nevertheless, final state large overlap with target $\mathcal{F} = |\langle \psi(t) | \psi_{\text{Dicke}}^{(0)} \rangle|^2$

Shuai-Feng Guo, et al. (2021)

Summary

- Al for quantum phases: numerical and experimental data and models
- Al for quantum methods: synergy and catalyst for algorithmic efficiency
- Al for quantum control: quantum compiling and state preparation
- Discussions:

- 'A good chef cannot make a decent meal with no ingredients.'
- ◆ No black magic: performance bounded from above by the quality of the samples.
- ◆ Even for the best case scenario, AI methods are approximate.
- ◆ Use the knowledge and intuition to improve, every bit helps!
- Know your target and limitations!

- Reverse thinking and consider AI for reverse thinking
- ◆ Sometimes, trying an idea out is the best way to verify its practicality.
- We are still at an early stage of AI for Physics and Science.

